Mark Scheme - 4.6 Amines

 (a) Number of moles of nitrogen = 1.00/23.2 = 0.0431 (1) thus number of moles of the amine is also 0.0431

 M_r of the amine = mass / number of moles = 2.54 / 0.0431 = 58.9 (1)

$$R - NH_2$$
 \longrightarrow 58.9
16.02 $\therefore R = '43' \therefore Formula is CH3CH2CH2NH2 or (CH3)2CHNH2 (1)$

- (b) (i) An electron deficient species that seeks out an electron rich / negatively charged / δ- site in a molecule [1]
 - (ii) 3-methylphenylamine [1]
 - (iii) These types of group are called **chromophores** *I* **azo** (1) and are responsible for the production of colour in compounds as found in **azo-dyes** (1) [2]
- (c) (i) Nucleophilic addition and elimination / condensation (1)

 The products are orange/ red/ yellow (1) [2]
 - (ii) R_f values 2.5 / 7.2 = 0.35 and 3.5 / 7.2 = 0.49 (1) Ketones are propanone and pentan-2-one (1)

Alkene W is
$$CH_3-C=C-CH_2-CH_2-CH_3$$

 $\begin{vmatrix} & & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

The name is 2,3-dimethylhex-2-ene (1) [4]

QWC Information organised clearly and coherently, using specialist vocabulary where appropriate [1]

- (iii) The equation / information shows that R and R¹ are different alkyl groups. 2-methyl-3-ethylpent-2-ene has both R and R¹ as ethyl groups [1]
- (d) (i) $CH_3COOH + CH_3CH_2OH \rightarrow CH_3COOCH_2CH_3 + H_2O$ [1]
 - (ii) Mass of ethanoic acid = $0.45 \times 60 = 27 g$ [1]
 - (iii) There is no indication of the time necessary to reflux the mixture / method of heating / mention of dangers from fire [1]
 - (iv) It acts as a catalyst / dehydrating agent / necessary to remove water / move the position of equilibrium to the right [1]
 - (v) To react with (any remaining) ethanoic acid [1]

Total [20]

[3]

(a)	(i)	Α	[1]
	(ii)	D	[1]
	(iii)	С	[1]
	(iv)	С	[1]
(b)	(i)	Nucleophilic substitution	[1]
	(ii)	The C–Cl bond in chlorobenzene is stronger than in 1-chlorobutane (1) due to delocalization of electron density from the ring with the bond (1) OR	
		Delocalised electrons in chlorobenzene (1) repel lone pair of electrons on nucleophile / ammonia	ı (1) [2]
	(iii)	C₄H₃NH₂ + CH₃COCI → C₄H₃NHCOCH₃ + HO	CI [1]
	(iv)	I Tin and concentrated hydrochloric acid (1)	
		Add sodium hydroxide (after cooling) (1)	
		Steam distillation to separate the product (1)	[3]
		II C₅H₅NN⁺CI⁻	[1]
		III Azo dye / azo compound	[1]

Total [13]

(a) (i) (Concentrated) nitric acid / (concentrated) sulfuric acid / Temperature of 40-80°C (Any 2 = 1 mark; Ali 3 = 2 marks)

Electrophilic substitution (1)

[3]

(ii) I. Peak area is proportional to amount of substance (1)

(Can obtain both marks from correct percentage)

[2]

II. $45 = COOH^{\dagger}$, $46 = NO_2^{\dagger}$, $122 = C_6H_4NO_2^{\dagger}$ and $167 = C_7H_5NO_4^{\dagger}$.

[2]

(iii) I. Lower melting point / melts over a range

[1]

II. 1 mark for each point.

- Dissolve in the minimum volume
- Of hot water
- Filter hot
- Allow to cool
- Filter
- Dry residue under suction / in oven below 142°C

Max 4 marks [4]

QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning.[1]

(b) (i) Tin and concentrated hydrochloric acid

[1]

(ii) Below 10°C (1)

[2]

(iii) N=N double bond is chromophore (1)

Compound absorbs blue /green / complementary colours to red / all colours but red (1)

Remaining frequencies are transmitted, giving the red colour seen. (1)

(c) Nitrogen has a lone pair (1) which can accept a proton (1)

[2]

[20 marks]

- (a) (i) (Fractional) distillation / (preparative) gas chromatography / HPLC / TLC column chromatography / solvent extraction [1]
 - [1]
 - (ii) the fragmentation pattern would be different / valid examples given
 - (iii) I

II Heated electrically / by a naked flame with a water bath (1) Add compound G to the ethanol until the hot ethanol will (just) not dissolve any more solute (1)

Filter hot (1)

Allow to cool (1)

Filter (1)

Dry in air / window sill / < 60 °C in an oven (1)

[5]

Maximum 4 out of 5 total if second marking point not given Note 5 marks maximum here

QWC Information organised clearly and coherently, using specialist vocabulary where appropriate

[1]

(iv) I The amine is reacted with sodium nitrite / HCl(aq) or nitrous acid (1) at a temperature of < 10 °C (1)

[2]

II

(b) (i) Nucleophilic addition (1)

Accept a mechanism that shows HCN polarisation and nucleophilic addition as a concerted process

polarisation / charges shown (1) curly arrows on first structure (1) regeneration of "C≡N or capture of H⁺ and curly arrow (1) [4]

(ii) Chromophores (1)
The colour will be black (1) as the compound absorbs blue / other colours (1)

[3]

Total [20]

5.

(a) (i) Both molecules have lone pairs on nitrogen (1)

The lone pairs can form (coordinate) bonds with H⁺ ions (1) [2]

- (ii) Lone pair on N in phenylamine is delocalised over benzene ring (1) therefore less able to accept H⁺ (1)
 [2]
- (iii) I Arrow in first step (1)

 Cation structure in second step (1)

 Arrow in second step (1)

II (fractional) distillation / steam distillation

III Sn and conc. HCl (1) followed by NaOH (1) [2]

(b) (i)

(ii) Addition polymerisation makes one product only /
 Condensation produces one product plus a small molecule like water (1)

Addition polymerisation uses one starting material / Condensation polymerisation has two different starting materials (1)

Addition polymerisation involves monomer with one functional group /
Condensation polymerisation involves monomer with two functional groups
(1)

(max 2) [2]

[3]

[1]

(iii) Alanine has strong (electrostatic) forces between the zwitterions (1)

Butanoic acid has hydrogen bonding between molecules / electrostatic forces in alanine are stronger than forces in butanoic acid (1)

[2]

Total [20]

accept C6H5 in place of the ring accept equations that show the catalyst

- (ii) It acts as a halogen carrier / it helps produce the electrophile/CH₃+ / increases polarity of the halogenoalkane [1]
- (c) There are 6 methyl protons and 4 aromatic protons, hence a ratio of 3:2 (1)
 All the methyl protons are equivalent as are all the aromatic protons (1) [2]
- (d) (i) Any 2 from NMR / HPLC / GC / refractive index / mass spectra / boiling temperature [2]

(ii) protein / dipeptide / polypeptide [1]

Total [12]